Acta Cryst. (1991). C47, 1968-1969

Lithium Dibenzo-14-crown-4-acetate–Ethanol (2/1)

BY RICHARD A. SACHLEBEN AND JOHN H. BURNS

Chemistry Division, Oak Ridge National Laboratory, Oak Ridge, Tennessee 37831, USA

(Received 1 November 1990; accepted 4 March 1991)

Abstract. (Dibenzo[b,i][1,4,8,11]tetraoxacyclotetradeca-2,9-dien-6-ylacetato)lithium-ethanol (2/1), [Li-(C₂₀H₂₁O₆)].0.5C₂H₅OH, $M_r = 387\cdot36$, monoclinic, $P2_1/n$, $a = 9\cdot970$ (4), $b = 9\cdot900$ (2), $c = 19\cdot79$ (1) Å, $\beta = 102\cdot09^\circ$, V = 1910 (2) Å³, Z = 4, $D_x =$ $1\cdot35$ g cm⁻³, Mo K $\overline{\alpha}$ radiation, $\lambda = 0.71069$ Å, $\mu =$ 0.93 cm⁻¹, F(000) = 820, T = 295 K, R = 0.048 for 1608 reflections with $I > \sigma(I)$. The acetate side arm is attached to the macrocycle in a pseudo-equatorial position, and there is no intramolecular cation-anion bonding. Instead, dimers are formed by intermolecular bonding between pairs of acetate and Li⁺ ions.

Experimental. The title compound was prepared by neutralization with LiOH of 2-(sym-dibenzo-14crown-4)acetic acid in ethanol (Burns & Sachleben, 1990). Colorless crystals were grown from wet ethanol solution by vapor diffusion of solvent into glycerol. Enraf-Nonius CAD-4 diffractometer, graphite-monochromated Mo $K\overline{\alpha}$ radiation, $\omega/2\theta$ scan technique. Cell parameters using a needle 0.05 $\times 0.07 \times 0.20$ mm by least squares on 18 reflections $(8 < \theta < 11^\circ)$, analytical absorption correction ($\mu =$ 0.93 cm^{-1}), transmission 0.967-0.991. 2805 reflections $(1 < \theta < 22^{\circ})$ in range 0 < h < 10, 0 < k < 10, -20 < l < 20. Corrected for decline of net intensities of three reference reflections $(50\overline{3}, 431, 326)$ by 2.7%. 1608 reflections with $I > \sigma(I)$, $R_{\text{int}} = 0.021$. MULTAN82 and Fourier syntheses determined the structure using Enraf-Nonius SDP (Frenz, 1983). Carboxylate group partially disordered; ethanol is disordered over four sites in the asymmetric unit: two independent molecular orientations (Fig. 1) with the C—C bond across a center of symmetry at $\frac{1}{2}, \frac{1}{2}, 0$ or $0,0,\frac{1}{2}$. Stoichiometry [(2/1)] dictated by this symmetry. H atoms in calculated sites, none on the ethanol. Full-matrix least-squares refinement of 281 parameters, using values of F_o . Anisotropic thermal parameters for all non-H atoms except C(21) and C(22). At convergence R = 0.048, wR = 0.056, S =1.54, $(\Delta/\sigma)_{\text{max}} < 0.01$, $(\Delta\rho)_{\text{max}} = 0.18$, $(\Delta\rho)_{\text{min}} = -0.17 \text{ e} \text{ Å}^{-3}$. Observations weighted as $4F_o^2/\{[\sigma(I)]^2$ + $(0.05F_0^2)^2$, where I = scaled intensity and $\sigma(I)$ is based on counting statistics. Scattering factors from International Tables for X-ray Crystallography (1974, Vol. IV). No correction for extinction. Refined

Table	1.	Positional	and	equivalent	isotropic	thermal			
parameters									

$\boldsymbol{B}_{eq} = (4/3) \sum_{i} \sum_{j} \boldsymbol{\beta}_{ij} \boldsymbol{a}_{i} \cdot \boldsymbol{a}_{j}.$							
	x	у	z	$B_{eq}(Å^2)$			
O(1)	0.8104 (2)	-0.1578 (2)	0.3431 (1)	4-47 (6)			
O(2)	0.5403 (2)	-0.1446 (2)	0.2728 (1)	4.25 (5)			
O(3)	0.5024 (2)	0.0655 (2)	0.3398 (1)	3.78 (5)			
O(4)	0.7728 (2)	0.0548 (2)	0.4072 (1)	3.84 (5)			
O(5)	0.9489 (3)	0-3234 (3)	0.0639 (1)	6.15 (7)			
O(6A)	0.3498 (5)	0.3467 (5)	0.2019 (3)	6.8 (1)			
O(6B)	0.6174 (7)	0.6248 (7)	0.4602 (4)	11.6 (2)			
O(7A)	0.603 (1)	0.128 (1)	0.0319 (7)	6.7 (3)			
O(7 <i>B</i>)	0.654 (1)	0.013 (1)	0.0631 (6)	7.7 (3)			
C(1)	0.8211 (4)	-0.2762 (4)	0.3022 (2)	5-5 (1)			
C(2)	0.6823 (4)	-0.3420 (4)	0.2844 (2)	5.5 (1)			
C(3)	0.5734 (4)	-0·2614 (4)	0.2362 (2)	4.96 (9)			
C(4)	0.4349 (3)	-0.0629 (3)	0.2398 (2)	3.39 (7)			
C(5)	0.3543 (4)	-0.0862 (3)	0.1754 (2)	4.16 (8)			
CÓ	0.2489 (4)	0.0024 (4)	0.1490 (2)	4.63 (9)			
C(7)	0.2257 (4)	0.1124 (4)	0.1858 (2)	4.64 (9)			
C(8)	0.3086 (3)	0.1392 (4)	0.2502 (2)	3.97 (8)			
C(9)	0.4129 (3)	0.0508 (3)	0.2771 (2)	3.19 (7)			
C(10)	0.4924 (3)	0.1847 (3)	0.3796 (2)	3.67 (8)			
CÌIÌ	0.5948 (3)	0.1758 (3)	0-4476 (2)	3.26 (7)			
C(12)	0.7433 (3)	0.1774 (3)	0.4399 (2)	3.68 (8)			
C(13)	0.9069 (3)	0.0302 (3)	0.4044 (1)	3.27 (7)			
C(14)	1.0169 (3)	0.1096 (4)	0.4341 (2)	4.21 (8)			
C(15)	1.1486 (3)	0.0726 (4)	0.4272 (2)	5.07 (9)			
C(16)	1.1683 (4)	-0.0398 (4)	0.3906 (2)	5.5 (1)			
$\dot{\alpha}_{17}$	1.0581 (3)	-0.1195 (4)	0.3610 (2)	5.03 (9)			
C(18)	0.9276 (3)	-0.0850 (3)	0.3689 (2)	3.82 (8)			
C(19)	0.5718 (3)	0.2952 (3)	0.4937 (2)	3.95 (8)			
C(20)	0.4505 (3)	0.2763 (3)	0.5278 (2)	3.99 (8)			
C(21)	0·470 (1)	-0.025 (1)	-0.0373 (5)	8-5 (3)*			
C(22)	0.424 (1)	-0.006 (1)	-0.0087 (6)	10.6 (3)*			
Li	0.6329 (5)	-0.0935 (6)	0.3730 (3)	4.0 (1)			

Occupancy factors: O(6A), 0.546 (5); O(6B), 0.454; O(7B), 0.256 (4); O(7A), 0.244; C(21), 0.488; C(22), 0.512.

* These atoms have isotropic thermal parameters.

atomic parameters and equivalent isotropic thermal parameters are given in Table 1, and bond lengths and angles are in Table 2.* One dimeric unit is shown in Fig. 1.

Related literature. Crown ethers with functionalized side arms have been studied with respect to their coordinating ability for Na⁺ and Li⁺ ions (Shoham, Christianson, Bartsch, Heo, Olsher & Lipscomb, 1984; Sachleben, Burns & Brown, 1988; Burns &

© 1991 International Union of Crystallography

^{*} Tables of structure factors, anisotropic thermal parameters and calculated H-atom parameters have been deposited with the British Library Document Supply Centre as Supplementary Publication No. SUP 54055 (33 pp.). Copies may be obtained through The Technical Editor, International Union of Crystallography, 5 Abbey Square, Chester CH1 2HU, England.

Table 2. Bond lengths (Å) and angles (°)

Li—01	2.080 (5)	C12O4	1.433 (3)
Li-02	2.067 (5)	O4-C13	1-373 (3)
Li—03	2.060 (6)	C13-C14	1.377 (4)
Li—O4	2.041 (5)	C13-C18	1.377 (4)
Li—O5	1.824 (6)	C14C15	1·397 (4)
C1-01	1 441 (4)	C15C16	1-364 (5)
C1-C2	1.504 (5)	C16-C17	1.380 (5)
C2-C3	1.513 (5)	C17-C18	1·385 (4)
C3-02	1.439 (4)	C18—O1	1.378 (3)
O2C4	1.377 (3)	C19-C20	1.515 (4)
C4C5	1.377 (4)	C20O5	1.220 (4)
C4—C9	1.388 (4)	C2006A	1.24 (1)
C5C6	1.384 (4)	C20	1.24 (1)
C6C7	1.358 (4)	07A-C21	1.27 (2)
C7C8	1.392 (4)	07 <i>B</i> C22	1.19 (2)
C8C9	1.378 (4)	C21-C'21	1.49 (3)
C9—O3	1.376 (3)	C22—C'22	1.55 (3)
O3-C10	1.433 (3)	O6A…O7A	2.66 (2)
C10-C11	1.513 (4)	O6AO7B	2.87 (2)
C11-C12	1.520 (4)	O6 <i>B</i> …O7 <i>A</i>	2.76 (4)
C11-C19	1.539 (4)	O6 <i>B</i> …O7 <i>B</i>	2.66 (2)
01	108-1 (3)	O4-C13-C14	125-2 (3)
$C_1 - C_2 - C_3$	115-1 (3)	C13-C14-C15	119.3 (3)
C2-C3-O2	108.4 (3)	C14C13C18	120.0 (2)
C3-02-C4	117.8 (2)	C14-C15-C16	120.6 (3)
O2-C4-C9	114.5 (2)	C15-C16-C17	120.1 (3)
O2-C4-C5	125.5 (3)	C16-C17-C18	119.6 (3)
C4C5C6	119.6 (2)	C17-C18-C13	120.4 (3)
C5C4C9	120-1 (3)	C17-C18-O1	125.0 (3)
C5-C6-C7	120.4 (3)	C18-01-C1	118.5 (2)
C6-C7-C8	120.6 (4)	C10-C11-C19	109-1 (2)
C7C8C9	119-3 (3)	C12-C11-C19	108.7 (2)
C8C9C4	120.0 (3)	C11-C19-C20	113-6 (2
C8-C9-O3	125-1 (2)	C19-C20-O5	118·0 (3
C9-03-C10	118.4 (2)	C19-C20-O6A	113-5 (7
O3C10C11	109-3 (2)	C19-C20-O6B	120.4 (8
C10-C11-C12	113-5 (3)	O5-C20-O6A	126-0 (6
C11-C12-O4	109-4 (2)	O5-C20-O6B	117 (1)
C12-04-C13	117.5 (2)	07A-C21-C'21	106 (2)
O4-C13-C18	114.8 (3)	O7 <i>B</i> —C22—C'22	120 (1)

Primed atoms have been transformed by 1 - x, -y, -z.

Sachleben, 1990). Of special interest is whether the side arm forms *intra*molecular bonds to cations complexed by the crown, because such bonding is assumed to be present to explain the solution behavior of similar molecules (Adamic, Eyring, Petrucci & Bartsch, 1985; Dutton, Fyles & McDermid, 1988).

Fig. 1. One centrosymmetric dimer, 20% probability ellipsoids, numbered as in Table 1. Both sites shown for disordered ethanol.

This research was sponsored by the Division of Chemical Sciences, Office of Basic Energy Sciences, US Department of Energy under contract DE-AC05-840R21400 with Martin Marietta Energy Systems, Inc.

References

- Adamic, R. J., Eyring, E. M., Petrucci, S. & Bartsch, R. A. (1985). J. Phys. Chem. 89, 3752–3757.
- BURNS, J. H. & SACHLEBEN, R. A. (1990). Inorg. Chem. 29, 788-795.
- DUTTON, P. J., FYLES, T. M. & MCDERMID, S. J. (1988). Can. J. Chem. 66, 1097-1108.
- FRENZ, B. A. (1983). Enraf-Nonius Structure Determination Package. Enraf-Nonius, Delft, The Netherlands.
- SACHLEBEN, R. A., BURNS, J. H. & BROWN, G. M. (1988). Inorg. Chem. 27, 1787-1790.
- SHOHAM, G., CHRISTIANSON, D. W., BARTSCH, R. A., HEO, G. S., OLSHER, U. & LIPSCOMB, W. N. (1984). J. Am. Chem. Soc. 106, 1280–1285.

Acta Cryst. (1991). C47, 1969–1971

Structure of Dibutanidobis(2,4,6-trimethylbenzoato)tin

BY M. F. GARBAUSKAS AND J. H. WENGROVIUS

General Electric Corporate Research and Development, PO Box 8, Schenectady, NY 12301, USA

(Received 2 January 1991; accepted 5 March 1991)

Abstract. $[Sn(C_4H_9)_2(C_{10}H_{11}O_2)_2], M_r = 559.3, mono$ $clinic, <math>P2_1/n, a = 12.07 (2), b = 9.976 (10), c = 22.76 (4) Å, \beta = 91.60 (10)^\circ, V = 2739.5 Å^3, Z = 4, D_x = 1.356 g cm^{-3}, Mo K\alpha, \lambda = 0.71069 Å, \mu = 9.63 cm^{-1}, F(000) = 1160, T \approx 203 K, R = 0.0699 for$ 2286 unique observed reflections. The title compound is monomeric with distorted octahedral coordination about the Sn atom. The four O atoms of the carboxylate groups and the central Sn atom are coplanar, with a maximum deviation out of the

© 1991 International Union of Crystallography